

SYLLABUS

DR VISHWANATH KARAD MIT - WORLD PEACE UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY
SCHOOL OF COMPUTER ENGINEERING AND TECHNOLOGY

B. Tech Computer Science & Engineering (Artificial Intelligence and Data Science)

BATCH 2024 - 2028

PROGRAMME STRUCTURE

Preamble:

The B. Tech CSE(Artificial Intelligence and Data Science) is the most sought-after branch of

Engineering in today world. With the advancements in hardware and software technologies,

there is huge scope for development of a wide range of applications. The Internet and allied

technologies have connected the world cohesively offering immense opportunities at national

and international levels. The students of MITWPU will be tomorrow's global leaders,

researchers, entrepreneurs and change-makers. MITWPU has the objective to make them

competent for global scenarios.

The B. Tech CSE (Artificial Intelligence and Data Science) curriculum offers a varied range of

subjects that fall into the core, specialization and basic sciences categories. The programme also

has provisions for pursuing Industry projects, Internships, Foreign and National study tours,

Interdisciplinary Projects as a prudential aspect of the course curriculum. The value-based

education is ensured by offering Peace related subjects and Yoga practice.

The curriculum is based on the theme of Continuous Evaluation. Theory and Laboratory

components are given appropriate importance. The communication skills are enhanced through

the component of Seminars. Industry exposure is given through Internships / Projects, and

development of latest Technologies is achieved and enhanced through usage of latest Tools.

The curriculum will transform the students into winning personalities.

Dr. Mangesh Bedekar

Professor and Dean,

School of Computer Engineering and Technology

Vision and Mission of the Programme

VISION

To be an academic centre of excellence in Computer Science and Engineering to cater to societal needs.

MISSION

- To create conducive environment for nurturing integrity, discipline and technical knowledge in emerging areas of computer science and engineering.
- To encourage students to work in trans-disciplinary domain in collaboration with industry and to inculcate research mindset.
- To develop globally competent graduates to provide solutions for societal problems.

Programme Educational Objectives

The Computer Engineering and Technology Graduate will:

- **PEO 1 Competent Professionals:** Identify and effectively use knowledge of Artificial Intelligence and Data Science to solve real life problems and offer sustainable solutions.
- **PEO 2 Multifaceted Professionals:** Apply research aptitude, innovative mindset and emerging technologies of Artificial Intelligence and Data Science to excel in multidisciplinary domains.
- **PEO 3 Ethical Professionals:** Pursue ethical values, leadership and interpersonal skills during their professional careers for wellbeing of society.

Programme Outcomes (POs)

Computer Engineering and Technology Graduates will be able to:

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs)

Computer Engineering and Technology Graduates will be able to:

- **PSO 1** Analyse, design and develop computer-based systems to solve real life problems by applying knowledge of Computer Science and Engineering.
- **PSO 2** Apply descriptive and predictive analytics to arrive at actionable insights from data for solving business/engineering problems
- **PSO 3** Demonstrate critical thinking and research attitude in computing and data-driven technologies to address interdisciplinary problems

For a UG course at MITWPU the actual credit distribution will be as below:

Course Basket	Credits Assigned
Program Core	114
Program Electives	16
University Core	24
University Electives	9
Total	163

Assessment Scheme:

L-T-P-J-C: L-Lecture, T-Tutorial, P-Practical, J-Project, C-Total Credits. **CCA1 - Class Continuous Assessment 1,** Abbreviation

MT - Mid Term Test,

CCA2 - Class Continuous Assessment 2,

LCA1 - Laboratory Continuous Assessment 1,

LCA2 - Laboratory Continuous Assessment 2,

LCA3 - Laboratory Continuous Assessment 3,

TE - Term End Exam

Type of Course	Assessment Scheme Code	Description L-T-P-J-C	CCA1	MT	CCA2	LCA1	LCA2	LCA3	TE	Total
Theory Courses	TT1	All Theory (L, T) Only courses with TE exams	15	30	15	ı	1	ı	40	100
Theory Courses with Continuous Evaluation	TT2	All Theory (L, T) only courses without TE exams	35	30	35	ı	ı	1	1	100
Lab /Projects/ Internship/ Dissertation	РЈ	All courses having P and J components Only	-	1	1	33.33	33.33	33.33		100
Theory and Lab Course 1	TL1	2-0-2-0-4	7.5	15	7.5	10	10	10	40*	100
Theory and Lab Course 2	TL2	1-0-3-0-4	2.5	10	2.5	15	15	15	40*	100
Theory and Lab Course 3	TL3	3-0-1-0-4	10	25	10	5	5	5	40	100
Theory and Lab Course 4	TL4	2-0-1-0-3	10	20	10	6.67	6.67	6.67	40	100
Theory and Lab Course 5	TL5	1-0-2-0-3	5	10	5	13.33	13.33	13.33	40*	100
Theory and Lab Course 6	TL6	2-1-1-0-4	10	25	10	5	5	5	40	100
Theory and Lab Course 7	TL7	1-1-1-0-3	10	20	10	6.67	6.67	6.67	40	100

- * Term End Exams to be conducted anywhere within the MITWPU Campus subject to the following conditions:
- 1. All eligible students will be taking this exam in the same space and at the same time slot.
- 2. The time for Term End Exams will be a maximum of 3 hrs.
- 3. QP will be sent along with Invigilators by DoE.

PLEASE NOTE: IF ANY OF THE ASSESSMENT CODE COMBINATION AS APPLICABLE TO YOUR PARTICULAR PROGRAM IS NOT AVAILABLE IN THE ABOVE GIVEN CODES, PLEASE CONTACT WITH YOUR ASSOCIATE DEAN ACADEMICS TO HAVE IT INCLUDED FROM DEAN ACADEMICS INCORDINATION WITH THE CONTROLLER OF EXAMINATION.

B. Tech. (First Year) (Computer Science Engineering-Artificial Intelligence and Data Science) (2024-28)

Semester - I

				Weekly	Work	load,	Hrs		Assessment
S.No.	Course Code	Name of the Course	Type					Credits	Scheme
				L	T	P	J		Code
1	EMT11010	Linear Algebra and Differential Calculus	PC	3				3	TT1
2	CHM10010	Engineering Chemistry	PC	2		2		3	TL4
3	PHY10010	Engineering Physics	PC	2		2		3	TL4
4	MEC10020	Engineering Graphics	PC	2		2		3	TL4
5	MEC10010	Ideas and Innovations in Manufacturing	PC			2		1	PJ
6	UNC10010	Effective Communication	UC	1				1	M
7	UNC10030	Environment and Sustainability	UC	1				1	M
8	UNC10020	Critical Thinking	UC	1				1	M
9	YOG10010	Yoga – I	UC			2		1	PJ
10	UNC10040	Social Leadership Development Program U					3	1	I
11	PCE10010	Foundations of Peace UC		2				2	TT1
		Total:		14	0	10	3	20	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 27 L-Lecture, T-Tutorial, P-Practical, J-Project.

Total Credits: 20

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

				Weel	kly Wo	rkload	, Hrs		Assessment
S.No.	Course Code	Name of the Course	Type		_		_	Credits	Scheme
				L	T	P	J		Code
1	CIV10010	Engineering Mechanics	PC	2		2		3	TL4
2	AID10010	Foundations of Programming	PC	2	-	4		4	PJ
4	EMT11140	Discrete Mathematics with Graph Theory	PC	3				3	TL1
5		Foundations of Computer Architecture and	PC	3			3	4	TL3
3	AID10020	System Design		3			3	4	
6	UNC10050	Advanced Excel	UC	1				1	M
7	UNC10060	Financial Literacy	UC	1				1	M
8	YOG10020	Yoga – II	UC			2		1	PJ
9	UNC10070	Co-creation	UC				3	1	Ι
10	UNC10080	Indian Constitution	UC	1				1	M
11	UNC10090	Indian Knowledge System	UC	2				2	M
12	UNC10100	Sports	UC				3	1	M
		Total:		15	0	8	9	22	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 32 L-Lecture, T-Tutorial, P-Practical, J-Project.

Total Credits: 22

First Year Total Credits=20+22=42

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

B. Tech. (Second Year) (Computer Science Engineering-Artificial Intelligence and Data Science) (2024-28) <u>Semester – III</u>

				Wee	kly Wo	rkload,	Hrs		Assessment
Sr. No.	Course Code	Name of Course	Type	L	Т	P	J	Credits	Scheme Code
1.	EMT22020	Calculus and Numerical Methods	PC	3	1			4	TT1
2.	AID20010	Data Structures	PC	3				3	TT1
3.	AID20020	Data Structures Laboratory	PC				3	1	PJ
4.	AID20030	Project Based Learning – I	PC				3	1	PJ
5.	AID20040	Database Management Systems	PC	3				3	TT1
6.	AID20050	Database Management Systems Laboratory	PC			2		1	PJ
7.		University Elective- I	UE	3				3	
8.		University Elective- II	UE	3				3	
9.	PCE10020	Spiritual and Cultural Heritage: Indian Experience	UC	2				2	TT1
10.	UNC10110	Research Innovation Design Entrepreneurship	UC				3	1	I
				17	1	2	9	22	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 29

Total Credits: 22

L-Lecture, T-Tutorial, P-Practical, J-Project.

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

B. Tech. (Second Year) (Computer Science Engineering-Artificial Intelligence and Data Science) (2024-28)

$\underline{Semester-IV}$

				Weel	kly Wo	rkload	, Hrs		Assessment
S.No.	Course Code	Name of the Course	Type	L	Т	P	J	Credits	Scheme Code
1.	EMT22110	Probability and Statistics	PC	3	1	I		4	TT1
2.	AID30010	Data Engineering Concepts	PC	3				3	TT1
3.	AID30020	Data Engineering Concepts Laboratory	PC			2		1	PJ
4.	AID30030	Artificial Intelligence and Expert Systems	PC	2				2	TT1
5.	AID30040	Artificial Intelligence and Expert Systems Laboratory	PC			2		1	PJ
6.	AID20060	Design and Analysis of Algorithm	PC	3				3	TT1
7.	AID20070	Project Based Learning-II	PC				3	1	PJ
8.		University Elective- III	UE	3				3	
9.	UNC10120	Rural Immersion	UC				3	1	I
10.	UNC10130	Life Transformation Skills	UC				3	1	I
11.	CHE10030	Indian Knowledge System(Sci. & Tech.)	PC	2				2	M
				16	1	4	9	22	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 30 L-Lecture, T-Tutorial, P-Practical, J-Project.

Total Credits: 22

First Year Total Credits=22+22=44

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

B. Tech. (Third Year) (Computer Science Engineering- Artificial Intelligence and Data Science) (2024-28)

$\underline{Semester-V}$

S.N				Weel	kly Wo	rkload	, Hrs		Assessment
0.	Course Code	Name of the Course	Type	L	T	P	J	Credits	Scheme Code
1.	AID30050	Data Visualization using Python	PC	-		4		2	PJ
2.		Professional Elective -I							
	AID30060	A. User Interface and User Experience Design							
	AID30070	B. Graph Machine Learning	PE	3		2		4	TL3
	AID30080	C. System Software and Compiler Design							
	AID30090	D. AI Systems and Applications							
3.	AID30100	Machine Learning	PC	3	-			3	TT1
4.	AID30110	Machine Learning Lab	PC			2		1	PJ
5.	AID20080	Operating Systems	PC	3				3	TT1
6.	AID20090	Operating Systems Laboratory	PC			2		1	PJ
7.	AID20100	Theory of Computation	PC	3				3	TT1
8.	AID20110	Project Based Learning – III	PC				3	1	PJ
9.	PCE10030	Managing Conflicts Peacefully: Tools and Techniques	UC	2				2	TT1
				14		10	3	20	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 27 L-Lecture, T-Tutorial, P-Practical, J-Project.

Total Credits: 20

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

B. Tech. (Third Year) (Computer Science Engineering-Artificial Intelligence and Data Science) (2024-28)

 $\underline{Semester-VI}$

C No	Course Code	Nome of the Course	Tomo	Type Weekly Workload, Hrs L T P J		Cradita	Assessment		
S.No.	Course Code	Name of the Course	Type					Credits	Scheme Code
1.	AID30120	Deep Learning	PC	3				3	TT1
2.	AID30130	Deep Learning Lab	PC 2		2		1	PJ	
3.		Program Elective -II							
	AID30140	A. Computer Vision							
	AID30150	B. Augmented Reality and Virtual Reality	PE	3		2		4	TL3
	AID30160	C. Edge Artificial Intelligence							
	AID30170	D. Soft Computing							
4.	AID30180	Software Engineering and Modelling	PC	3				3	TT1
5.	AID30190	Cognitive Computing and Natural Language Processing	PC	3				3	TT1
6.	AID30200	Cognitive Computing and Natural Language Processing Lab	PC			2		1	РЈ
7.	AID30210	Data Science Using R Programming	PC			2		1	PJ
8.	AID20120	Mini Project using Java Programming	PC				3	1	PJ
9.	AID20130	Project Based Learning – IV	PC				3	1	PJ
10.	AID30220	Seminar	PC				3	1	PJ
11.	UNC10140	National Academic Immersion	UC	2				2	I
				14	0	8	9	21	

^{**}Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 31 L-Lecture, T-Tutorial, P-Practical, J-Project.

Total Credits: 21 Third Year Total Credits=20+21=41

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

B. Tech. (Final Year) (Computer Science Engineering-Artificial Intelligence and Data Science) (2024-28)

$\underline{Semester-VII}$

S.No.	Course Code	Name of the Course	Type	Weekly Worklo		rkload	, Hrs	Credits	Assessment
5.110.	Course Code	Name of the Course	Type	L	T	P	J	Credits	Scheme
1.	AID30230	Bigdata Technologies	PC	3		2		4	TL3
2.	AID30240	Distributed and Cloud Computing	PC	3		2		4	TL3
3.	AID30250	Network and Cyber Security	PC	3		2		4	TL3
4.	AID40010	Capstone Project	PC				18	6	PJ
5.		Program Elective -III							
	AID40020	A. Generative Adversarial Network							
	AID40030	B. Time Series Analysis and Forecasting	PE	3		2		4	TL3
	AID40040	C. Bioinformatics Algorithms and	FE	3		2		4	11.5
	AID40040	Applications							
	AID40050	D. Blockchain Technology							
				12		8	18	22	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 38 L-Lecture, T-Tutorial, P-Practical, J-Project.

Total Credits: 22

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

S.No			Typ		ekly V	Vorkl	oad, Hrs		Assessment
	Course Code	Name of the Course	e	L	Т	P J		Credits	Scheme Code
1.		Program Elective –PE IV/MOOC							
	AID40060	A. Generative AI							
	AID40070	B. Sentiment and Emotional Analysis	PE	3		2		4	TL3
	AID40080	C. Pattern Recognition							
	AID40090	D. Scalable Data Science							
2.	AID40100	Internship	PC				30	10	PJ
				3	0	2	30	14	

**Assessment Marks are valid only if Attendance criteria are met

Weekly Teaching Hours: 35

L-Lecture, T-Tutorial, P-Practical, J-Project.

Total Credits: 14

Final Year Total Credits=22+14=36

Total Credits=42+44+41+36=163

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

B. Tech. (Computer Science Engineering- Artificial Intelligence and Data Science) (2024-28)

Professional Elective Tracks

Semester	Course Code	Name of the Course	Туре
V	AID30060	A. User Interface and User Experience Design	Program Elective - I
V	AID30070	B. Graph Machine Learning	Program Elective - I
V	AID30080	C. System Software and Compiler Design	Program Elective - I
V	AID30090	D. AI Systems and Applications	Program Elective - I
VI	AID30140	A. Computer Vision	Program Elective - II
VI	AID30150	B. Augmented Reality and Virtual Reality	Program Elective - II
VI	AID30160	C. Edge Artificial Intelligence	Program Elective - II
VI	AID30170	D. Soft Computing	Program Elective - II
VII	AID40020	A. Generative Adversarial Network	Program Elective - III
VII	AID40030	B. Time Series Analysis and Forecasting	Program Elective - III
VII	AID40040	C. Bioinformatics Algorithms and Applications	Program Elective – III
VII	AID40050	D. Blockchain Technology	Program Elective – III
VIII	AID40060	A. Generative AI	Program Elective – IV
VIII	AID40070	B. Sentiment and Emotion Analysis	Program Elective – IV
VIII	AID40080	C. Pattern Recognition	Program Elective – IV
VIII	AID40090	D. Scalable Data Science	Program Elective - IV

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

University Electives List

2024-28

University Elective-I	University Elective-II	University Elective-III
(3 Credits)	(3 Credits)	(3 Credits)
CSE10030	CSE10060	CSE10090
Coding with C++	Web Technologies	Human Computer Interface
CSE10040	CSE10070	CSE10100
Python Programming	Software Engineering	Cyber Security
CSE10050	CSE10080	CSE10110
Java Programming	Basics of DBMS	Basics of Artificial Intelligence

Academic Coordinator Program
Director/HoS

Associate Dean Academics

Dean

Dean Academics MITWPU

COURSE STRUCTURE

Course Code	AID10010	AID10010							
Course Category	Programmi	Programming Foundation							
Course Title	Foundations of	Foundations of Programming							
Teaching Scheme	Lectures	Tutorials	Laboratory / Practical	Project	Total				
Weekly load hours	2hrs/wk		4hrs/wk		2+2=4				
Credits	2		2		4				
Assessment Schema Code	PJ								

Prerequisites:

Introductory Knowledge of Computers.

Course Objectives:

1. Knowledge:

i. Learn programming skills and programming language constructs.

2. **Skills**:

- i. Understand the functions, arrays and structures using C language.
- ii. Understand file handling and pointers using C language.

3. Attitude:

Learn to apply programming skills for solving real world problems.

Course Outcomes:

After completion of the course the students will be able to: -

- 1. Develop efficient logic and algorithms for solving a problem.
- 2. Analyze the given problem and solve it using suitable programming constructs.
- 3. Apply programming skills for solving real world problems.

Course Contents:

Introduction of Computer System and Problem Solving:

Basics of Computers: Architecture, Processors, Memory, Number Systems, Data Representation-Floating point, Char, String. System Software - Operating system, Editor, Compiler, Assembler, Linker, Loader.

Introduction to Problem Solving: Problem solving process/framework, Programming Paradigms: Imperative, Object Oriented, Functional and Logic programming. Characteristics of Programming Languages, Role of programming languages, need of studying programming languages.

Programming Design Tools: Algorithms, Pseudo-code and Flowchart, Case studies for Algorithm, Flowchart and Pseudocode. Top-Down and Bottom-Up design approach. Software Development Life Cycle.

Associate Dean Academics (School)

Dean Academics MITWPU

Fundamentals of C

Introduction to C: Fundamentals of C-Programming, Data types, Constants, Variables, Operators, Expression, Pre-processor directives. Data Input and Output.

Control Structures: Decision control statements, Selection/conditional branching Statements: if, ifelse, nested if, if-elif-else statements. Basic loop Structures/Iterative statements: while loop, for loop, selecting appropriate loop. Nested loops, the break, continue, pass, else statement used with loops Structure of C program, Coding conventions

Derived data types and Functions in C

Derived data types: Array- Single and Multidimensional arrays, Structure – Structure and Array of structure, Union. Strings

Functions in C: User defined and Library Functions-String Library Functions. Different parameter passing methods (Call by Value and Call by Reference), Passing array to a function, Recursion.

Pointers and File handling in C

Pointers: Lifetime of Variables, Scope Rules: Static and Dynamic scope. Pointers, Passing Pointers to function, Pointers and Arrays, Dynamic memory allocation and its application.

File Handling in C: File, Types of Files, File operations.

Fundamentals of Programming Language:

Introduction: Characteristics of Programming Languages, Influencing Factors for the Evolution of Programming Language, Desirable Features and Design Issues. Brief Introduction to Programming Language Paradigms: Imperative, Object Oriented, Functional, Logic and Concurrent Programming Syntactic Structure: Syntax, Semantics, Structure, Character Set Tokens, Sentence-Syntax and Semantics, Expression Notation, Grammar, Syntax Tree, Context Free Grammar, Translators

Laboratory Exercises:

- 1. Write a program in C to check leap year.
- 2. Write a menu driven program in C to implement the basic arithmetic operations.
- 3. Write a program in C to generate multiplication tables.
- 4. Write a C Program to calculate salary of an employee given his basic pay (take as input from user). Calculate gross salary of employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let employee pay professional tax as 2% of total salary. Calculate net salary payable after deductions.
- 5. Write a program in C to perform basic operation such as addition, saddle point, inverse, magic square of two matrices.
- 6. Write a C function to compute the factorial of a number with and without recursion.
- 7. Write a C program to accept student details and display their result using array of structures.
- 8. To accept a student's five course marks and compute his/her result. Student is passing if he/she scores marks equal to and above 40 in each course. If student scores aggregate greater than 75%,

Associate Dean
Academics
(School)

Dean Academics MITWPU

- then the grade is distinguished. If aggregate is 60>= and <75 then the grade of first division. If aggregate is 50>= and <60, then the grade is second division. If aggregate is 40>= and <50, then the grade is third division.
- 9. To check whether the input number is Armstrong number or not. An Armstrong number is an integer with three digits such that the sum of the cubes of its digits is equal to the number itself. Ex. 371.
- 10. To simulate a simple calculator that performs basic tasks such as addition, subtraction, multiplication and division with special operations like computing xy and x!
- 11. To accept the number and Compute a) square root of number, b) Square of number, c) Cube of number d) check for prime, d) factorial of number e) prime factors
- 12. To accept two numbers from user and compute smallest divisor and Greatest Common Divisor of these two numbers.
- 13. To accept a number from user and print digits of number in a reverse order.
- 14. To input binary number from user and convert it into decimal number.
- 15. To generate pseudo random numbers
- 16. To accept list of N integers and partition list into two sub lists even and odd numbers.
- 17. To accept the number of terms a finds the sum of sine series.
- 18. Write a C program that accepts a string from user and perform following string operations- i. Calculate length of string ii. String reversal iii. Equality check of two strings iii. Check palindrome ii. Check substring
- 19. Create Structure EMPLOYEE for storing details (Name, Designation, gender, Date of Joining and Salary). Define function members to compute a) total number of employees in an organization b) count of male and female employee c) Employee with salary more than 10,000 d) Employee with designation "Asst Manager"
- 20. Write a C function to swap two numbers with and without pointers.
- 21. Write a C program to copy contents of one file to another using File handling.
- 22. Write a menu driven program in C to perform all string operations. (In built functions).

Learning Resources:

Reference Books:

- 1. Pradeep Sinha, Priti Sinha, "Computer Fundamentals", Sixth edition, bpb publication.
- 2. Ramon Mata-Toledo, Pauline K. Cushman, "Introduction to Computer Science", Schaum's Outline series.
- 3. Herbert Schildt, "C: The Complete Reference", Fourth Edition, McGraw Hill Professional.
- 4. Yashwant Kanetkar, "Let us C", Fifteenth edition, bpb publication.

Web Resources:

Web Links:

- 1. http://www.studytonight.com/c/overview-of-c.php
- 2. https://www.tutorialspoint.com/cprogramming

Associate Dean Academics (School) Dean Academics MITWPU

MOOCs:

- 1. http://nptel.ac.in/courses/106105085/2
- 2. http://nptel.ac.in/courses/106104074/1
- 3. https://nptel.ac.in/courses/106/105/106105171
- 4. https://nptel.ac.in/courses/106/106/106106212/

Pedagogy:

- 1. Power point presentations
- 2. Practical Demos
- 3. Videos
- 4. Online Classroom
- 5. Expert Lectures

COURSE STRUCTURE

Course Code	EMT1114	EMT11140							
Course Category	Program f	Program foundation							
Course Title	Discrete M	Discrete Mathematics with Graph Theory							
Teaching Scheme	Lectures	Tutorials	Laboratory / Practical	Project	Total				
Weekly load hours	3		-	-	3				
Credits	3		-	-	3				
Assessment Schema Code	TL1								

Prerequisites: Basic Mathematics

Course Objectives:

- 1. To understand the logic for solving problems using set theory.
- 2. To acquire skills of using Graph Theory for modelling computer science problems
- 3. To learn relations and functions for solving relevant problems in computer science.
- 4. To apply Number Theory in Computer Application

Course Outcomes:

After completion of this course students will be able to:

- 1. Analyze and articulate the logic to solve problem using set theory.
- 2. Apply knowledge of relations and functions to solve relevant problems in computer science
- 3. Model computer science problems using Graph theory
- 4. Demonstrate the concepts and applications of Number Theory in Computer Science.

Course Contents:

Set Theory: Sets, Combinations of sets, Venn Diagrams, Finite and Infinite sets: Uncountable and Countable, Principle of inclusion and exclusion, Multisets, Cartesian Product and Power Set Fuzzy sets, Basic concepts and types of Fuzzy sets, Operations on Fuzzy sets

Relations and Functions: Relations and Their Properties, n-ary Relations and Their Applications, Representing Relations, Closures of Relations, Warshall's Algorithm to find transitive closure, Equivalence Relations, Partial Orderings - Chain, Anti chain and Lattices.

Function: surjective, injective and bijective functions, Inverse Functions and Compositions of Functions, Recursive Function.

Graphs: Graph and Graph Models, Graph Terminology and Types of Graph, Representing Graph and Graph Isomorphism, vertex and edge Connectivity, Eulerian and Hamiltonian, Single source shortest path- Dijkstra's algorithm, Planar Graph, dual of a planer graph, independence number and clique number, chromatic number, statement of Four-color theorem, digraphs.

Associate Dean Academics (School)

Dean Academics MITWPU

Trees: Introduction, properties of trees, Binary search tree, decision tree, prefix codes and Huffman coding, cut sets, Spanning Trees and Minimum Spanning Tree, Kruskal 's and Prim 's algorithms, The Max flow- Min Cut Theorem.

Number Theory and Its Applications: Modular Arithmetic & its properties, The Euclidean Algorithm, Extended Euclidean algorithm, Solving Congruence equations, The Chinese Remainder Theorem, Fermat's Theorem, Primitive Roots and Discrete Logarithms.

Learning Resources:

- 1. Kenneth H. Rosen, —Discrete Mathematics and its Applications^{||}, Tata McGraw-Hill, ISBN 978-0-07-288008-3, 7th Edition.
- 2. C. L. Liu, —Elements of Discrete Mathematics, TMH, ISBN 10:0-07-066913-9.
- 3. George J. Klir and Bo Yuan Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall

Reference Books:

- 1. Bernard Kolman, Robert C. Busby and Sharon Ross, —Discrete Mathematical Structures, Prentice-Hall of India /Pearson, ISBN: 0132078457, 9780132078450.
- 2. Dr. K. D. Joshi, Foundations of Discrete Mathematics, New Age International Limited, Publishers, January 1996, ISBN: 8122408265, 9788122408263

Supplementary Reading:

- 1. N. Biggs, "Discrete Mathematics", 2ndEdition, Oxford University Press
- 2. Data Structures Seymour Lipschutz, Shaum's outlines, MCGraw Hill Inc.

Web Resources:

- 1. https://learn.saylor.org/course/cs202
- 2. https://www.mooc-list.com/tags/discrete-mathematics

Web links:

1. https://www.tutorialspoint.com/discrete_mathematics/index.htm

MOOCs:

- 1. http://nptel.ac.in/courses/106106094/3
- 2. https://www.coursera.org/learn/discrete-mathematics

Pedagogy:

- 1. Team Teaching
- 2. Tutorials and class tests/assignments
- 3. Audio- Video technique